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The problem of estimating the integral of a stochastic process by linear

Abstract.
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asymptotic performance of optimal-coefficient estimators that depend on an
inverse covariance matrix is determined for regular sampling designs under
slightly different assumptions than those in Sacks and Ylvisaker (1970).
Simple-coefficient estimators based on a trapezoidal rule with a correction
term that depends on the q.m. derivatives of the process at all sampling points
of a regular design are introduced. Their asymptotic performance is identical
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1. INTRODUCTION

We consider the estimation of the weighted integral of a stochastic

process X over a finite interval
b
I = fa ¢(t)X(t)dt

from observations of the process at a finite number of sampling points. The
process X = { X(t), at¢b } has mean O, continuous covariance function R(s,t) =
E[X(s)X(t)]. and exactly X quadratic mean (q.m.) derivatives (K=0,1,2,. .).
The weight ¢ is a known (nonrandom) continuous function. The performance of an
estimator is measured through the mean square error.

In BC (1989), we concentrated on linear estimators of the form
I =37 X(t

n 1=0%,n" 'Yy

at (n+l1) sample points of a regular sequence of sampling designs

n) that are based only on the observations of the process X

{Tn(h) = {ti n}?=0' a=t, n(t1 n(...(tn n:b}:_1 generated by a positive

continuous density h via

t
féi'“ h(t)dt = i/n, i=0.1....,n.
Here we consider linear estimators of ]I based on observations of the process
together with its existing q.m. derivatives X(l)(t).....X(K)(t) at (n+l)

sampling points Tu={ti n}?-O over the finite interval [a,b], and using

_ i=0.....K
coefficients Cn = (ci.j.n)i=0.....n . They are of the form
n K
ah= 2 o5 e xUe
1=0 y=0 140 -n

We want to determine the asymptotic performance of these types of estimators
based on regular sampling designs (Tn(h)}u and apprepriate coeffici-nts (cn}n.

»*
We are also interested in finding asymptotically optimal designs (Tn}n and




2
estimator-coefficients (C:)n. in the sense that
E(I-.1")2 / inf E(I-,1 )2 — 1
d'n d'n n
T .C
n'n
where the infinum is taken over all sampling designs Tn with (n+1) sample
points and all choices of coefficients Cn' (Optimal designs for fixed sample

size, when they exist, are in general hard to determine.)

When no q.m. derivatives are used, the optimal-coefficient estimators are

I~ N "1 '
of the form In = fT RT XT . where XT = (X(to'n)...-.x(tn‘n))-
n n n n
n -
RTn = (R(ti,n‘tj.n))i.j=0 assumed nonsingular, an = (f(tO,n)""'f(tn,n)) and

f(t) = IZR(s.t)¢(s)ds. In BC (1989) the asymptotic performance of these
optimal-coefficient estimators using regular sequences of sampling designs,
In(h)' is obtained for a general class of processes with exactly K q.m.

derivatives, K=0,1,2,.., namely

Boerol o @ (0)8°(1)
(K*2)T "a K d

(1.1) n?*2 E[1-1_(n)1?

t'

where Bm is the mth Bernoulli number. In particular when the sampling density

ne is proportional to (aK¢2)1/(2K+3), then the asymptotic performance becomes
Borol
2K+2 T 92 | 2K+2 b 2 1/7(2K+3) , 2K+3 A x
(1.2) n E[I-I (h)]" - K 2) T {J, [ (t)e7(2)] dt} =C

with minimal value C. of the asymptotic constant. This result, together with
the asymptotic optimality of in(h*) was shown for K = O and 1 by Sacks and
Ylvisaker (1966,1968,1970) and for general K by Eubank, Smith and Smith (1982)
but for a more restrictive class of covariances.

Optimal-coefficient estimators which use the values of the process and of
its existing q.m. derivatives at the sampling points, were considered by Sacks
and Ylvisaker (1970). Their mean square errors have the same rate of

convergence to zero, n—(2K+2), as in (1.1) and (1.2) for the
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optimal-coefficient estimators which do not use the existing q.m. derivatives,
but they have smaller asymptotic constant. In Section 3 we give a simple proof
of this result under slightly different assumptions than those considered by
Sacks and Ylvisaker (1970a) where the jump function aK(°) was assumed to be
constant, and under additional assumptions on the weight function ¢. The proof
given here involves only a simple numerical approximation of integrals of
deterministic functions using derivatives (Proposition 1).

These optimal-coefficient estimators require the inversion of a
(K+1)(n+1)x(K+1)(n+1) covarjance matrix, and hence they are liable to
numerically instabilities for large sample size. More significantly, they
require knowledge of the covariance matrix (and its partial derivatives) and
thus they are not generally robust. Stein (1988) showed that if an incorrect
covariance is used which is compatible (in an appropriate but restrictive
sense) with the true covariance, then the asymptotic performance of the
optimal-coefficient estimators under these two covariances is identical.
However this condition fails to be satisfied when for instance asymptotically
consistent estimators of the unknown covariance function are used. For

-0t

example, the covariance function R(t) = e of a zero mean Gaussian process

—Bltl’ where 0 is an asymptotically

and the covariance function ﬁ(t) =e
consistent estimator of 6, are not compatible.

In order to address the issues of robustness and of knowledge of the
covariance function, a sequence of estimators was introduced in BC (1989) which
uses regular sampling designs Tn(h) and simple coefficients (not depending on
the covariance), and is based on the weighted Gregory formula. These
estimators use only observations of the process (but not its existing
derivatives) at the sample points. Their asymptotic performance was shown to

be identical to that in (1.1) and (1.2) for the optimal-coefficient estimators

for general processes with exactly K q.m. derivatives, K=0,1,2,... . These
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highly nonparamet-ic estimators are given by

n-1 ¢(t, )
=1 1¢(a) _i.n 1 ¢(b)
L =g {gn@y *@ *+ 2 6 7 *Cn) * g Ry X))
(1.3) | K o(t
_1 J .n _yJda dp (=
ANE [h——"—(t = x(e g )7+ (D383 HE xa)) )
j=1 n-j.n
th r
where Ad denotes J  order difference, AJg(t ) = EJ_O( 1)j ( )g(ti+r n)
0<i+j<n, and
1
= [0+ )17 Sie(e-1). . (t-d)dt
for j21, and can be written in the form
, 1 2 #X
(1.4") I (h) == 2 a, (+/)(t )
n n.5 i ‘h i,n
where the coefficients a. i=0,....,n, are given by
L EK for 1 =0
5 j=1wj o = O,n,
1+ (-1)it! ZK—1(11)WJ for 1 < 1 <K,
(1.4'V) ai = ‘ qj—-
1 for K+1 ¢ 1 ¢ n-K-1,
| an-i for n-K (i { n-1.
For example, the values of a,. i=0,...,n, for K=0,1,2,3,4, (and appropriately
large n) are as follows:
K=0 L1 1, 1. 1.1 . 1. 1, 1, 1, %
2. , 1] ’ 1] ’ ’ ’ ’ * * A 2
5 13 13 5
K=1 o 1 1, 1. 1, 1, .1, 1, 1 1, o 13
3 7 23 23 7 3
K =2 g 5 93 1, 1, 1,...,1, 1, 1, 54 = g
K =3 251 299 211 739 1.1 1 1 739 211 299 251
B 720° 240°' 240°' 720’ ooy ' 720" 240 240" 720
K = 4 95 317 23 793 157 1 1 157 793 23 317 95
- Tttt 160 7200 30 240 288

288°' 240' 30° 720’ 160’
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In Section 4, we introduce simple-coefficient estimators which use the
values of the process X and of its existing q.m. derivatives at all sampling
points of a regular sampling design Tn(h). They are based on the trapezouidal
rule for integral approximation with a correction term that depends on the
values of the K q.m. derivatives at all sample points, namely on the weighted
Rodriguez formula (Section 2). Their asymptotic performance is shown in
Theorem 2 to be identical with that of the optimal-coefficient estimators which
use the values of the q.m. derivatives of X. The simple-coefficient estimators
do not require precise knowledge of the covariance function R (or of its
derivatives), and thus they are fairly robust. They are also numerically
stable in view of their simple form. However, they are impractical for
applications where q.m. derivatives of X at the sample points cannot be
observed. In such cazes the q.m. derivatives can be approximated by finite
differences. The resulting estimators (4.2) use only the values of the process
at the sampling points, and therefore cannot have better asymptotic performance
than that in (1.1) and (1.2) for the simple-coefficient estimators considered
in BC (1989). However, they may have comparable performance for small or
moderate sample size, as the example in Section 5 illustrates.

In Section 5, we compare the finite sample size performance of the two
types of simple-coefficient estimators based only on the values of a stationary
process with K=2 q.m. derivatives under both asymptotically optimal sampling
designs (Tn(h*)}n and uniform sampling. We find that in this example the two
estimators have the same asymptotic performance. We also find that the
estimators (optimal and simple-coefficient) that use the existing q.m.
derivatives clearly perform better than the estimators that do not for moderate
and large samples.

In Section 2 we develop a quadrature formula for integral approximation of

deterministic functions based on the derivatives of the integrand under regular
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sampling designs. These 1results are used in Sections 3 and 4.

2. APPROXIMATION OF INTEGRALS OF NONRANDOM FUNCTIONS USING DERIVATIVES AND
REGULAR SAMPLES.

The classical rules for approximating integrals of deterministic functions
use periodic sampling designs, and some of these have been extended to regular
sampling designs in BC (1989). Here we consider the trapezoidal rule with a
correction term that depends on weighted derivatives of the integrand at all
sampling points of the regular design. These rules are derived from the
standard Rodriguez formula for periodic sampling in Shoenberg (1969), and are
generalized to regular sampling in Proposition 1. Their asymptotic properties
are given in Proposition 2.

We will use the "h-weighted” derivatives of a function f defined by

- - (1) )
f(O) = f/h, f(J) = f(j—l)/h for j21,

provided f and h have the required derivatives, and the h-weighted differential

operator d, :

J

dyf = £ for 120,

so that d. f Also the probability function H(x.,y) is defined by

ifay = fasgy
fi h(t)dt for a{x<y«<b,

H(x.y) =
-H(y.x) for ady<x<b,

and satisfies for all x # y and j 2 O,

& H(x.y) = -h(x). ¥ H(e.y)n(e)de = J% 1t (x.y).

In the particular case where h is the uniform density on [a.b]: h(t) = (b-a)—l.

then f( = (b—a)J+lf(J). J 2 0. and H(x.y) = (y-x)/(b-a).

3)

Proposition 1. (Weighted Rodriguez formula for regular sampling). If f and h
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have m(>1) continuous derivatives on [a,b], and if (Tn(h)}:=1 is a regular

sequence of sampling designs, then we have

m-1 n-1

b _ _m! 1 (2m-j-1)! N
I, f(t)de = (Zm)! jio RN CE VL 150 [f(j)(ti_n) + (-1) f(j)(ti+1.n)]
n-1 t
+ TE%TT 3 ft1+1'n dm[H(ti.n‘t) H(t'ti+l.n)]m f(m)(t)h(t) dt.

i=0 i.n

Furthermore, if f and h have 2m continuous derivatives on [a,b], then the

remainder integral term can be written as

-1 m n;l Iti+1'n He m f h d
(2m)! i=0 ti.n [ ti.n't)H(t'ti+1.n)] (2m)(t) (t) de.

Proof. Fix [x,y] C [a.,b], and define the weighted Legendre polynomial

1 m
P(O)(t) = ET'dm[H(x't) H(t,y)]
It can also be expressed as follows

Proy(8) = a7 d,[H(x ) (H(x.y) - H(x. £)]"

L5 Mt aooy)™ ! 4 i o™
m! i=0 i m
(m+i)!
- 3 —)—5 -0 He)™ ! 0
1=0 (m-1)! 1!

from which we obtain for O ¢ j ¢ m,

m

i I
= (m+i)! (-1) m-1i i-j
P(J)(t) - 121 (m-1)! 11 (i-)! H(x.y) H(x.t) 7,

and in particular

m+i)!

= _J m-J
P(J)(x) T (m=§)! ;! (-1)° H(x.y)" °.

Likewise, we obtain
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Pyy@) = (0" G Heen)™ = (0™ P60
Now consider the remainder

b = tE%ST’fi d,[HCx. OH(e.y)T" £ (Oh(E) dt = (ggyT I R0y (1) (y ()R(e) de.

For m > 1, repeated integration by parts yields

_ m |y Y
= I f(t)de o) (-1) Jfo (- 1) (.)(c) P(m_j_l)(t)
X
from which we obtain
m-1
y _ _m! - j+1 (2m-j-1 1\ J
B 1004e = tamyr 2, MO 31 BT 0+ 0001+

The result follows by first splitting the integral as follows, fb f(t) dt

n-1
= 2 f i+1 n f(t) dt. and then applying the above formula in each subinterval
i=0 i n

t ] and using H(t ) = 1/n . The second expression is

[ti.n' i+l,n i.n’ t1+1.n

obtained by m—times repeated integration by parts of the remainder P n

Based on Proposition 1 we introduce the following rule of degree m using

derivatives of f based on regular sampling Tn(h).

m ™l 2m-j-1 n1
wln(Ti0) = T 2 5 O 2 Ut + (D7 )

as an approximation to the integral I(f) = f:f(t)dt. For m=1 and m=2, these
rules a-e identical to the rules used in BC (1989). Also for j: odd the i sum
telescopes and reduces to f(j)(a)—f(j)(b). Their asymptotic performance is as

follows.

Proposition 2. If f and h have p)>m continuous derivates on [a,b], then

np[I(f)—mIn(f;h)] - 0 for m < p < 2m,
n




(-1)" mt2 5 o
@1 (@7 L (2m-1)(P)~f(9p-1)(2)] for p 2 2m.
Proof. For simplicity of notation we write i, for t and I for I (f:h).
i i.n n mn

If f and h have (m+j), O { j < m, continuous derivatives, then j-times repeated

integration by parts of the remainder p_ in Proposition 1 gives
m p

Jj n-1
P %55%7 z I i+1 m_j [H(t,.t) H(t.ti+1)]m f(m+j)(t)h(t) dt.

. m C s .
The function dm_j[H(ti.t) H(t.ti+1)] has q { j distinct roots in [ti' ti+1]'

say ci'1 < ...« ci.q so that putting ci.O = ti' Ci.q+1 = ti+1' we have

jn-1l q c,
-1 i, é+1
P = (2m)! 2 2 J

m
2o oo e e dm_j[H(ti.t)H(t.ti+l)] f(m+j)(t)h(t) dt.

Since dm_j[H(ti.t)H(t.ti+1)]m has constant sign in each subinterval

(ci e S £+1)' the Mean Value Theorem can be applied to obtain
Jn-l q
-1 i é+1 m
P = (2m)! iEO 8§0 f(m+J)(Ei e) f m—j[H(ti't)H(t'ti+l)] h(t) de
c
1.8 _ ,
where i o < fi.e < i esl If we write fti h(t) dt = ae/n. it follows that
0= a < a, < ... < aq < aq+l and putting u = nH(ti.t). we obtain
_d et g 1 %ol m-j m
p ) —— d [u(1-u)]" du.

m -~ (2m)! i—O e—o f(m+j)(fi.e nm+j+l a,

1
From the Mean Value Theorem, we have == h(ci)(ti+l'ti)' ty < (i < tis1r SO

that by Riemann integrability, we have

m J q
n Jre_ - "‘1! e+l mJ _
(=101~ (Em) {82 Iy a, [u(1-u)]"du }I f (e g (DIR(E)E

J
= %55%7 Fo d™ ¥ [u(1-u)]" du L (o go1) () = F(egoy (@]
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[ ]m
(;;)g B{(m.m) [f(2m_1)(b) - f(2m—l)(a)] if  j=m

=0 if 0¢j < m.

2
Using B(m,m) = Eim;é%m£§T+l) = ($;+1)! '

Now assume j > m. Then m-times repeated integration by parts of the

we obtain the final result.

remainder P in Proposition 1 yields

.ymn-1 ¢t
-1 i+]
P = T 2o T TG OHCe e T £p (OR(e)

Using the explicit expression of P(O)(t) in the procf of Proposition 1, we have

—1ym m n-1 t,
P = (2;)! efo () -n° n;_e ifO ft;+1 H(ti.t)m+e f om) (D)R(¢) dt.

Again, repeated integration by parts gives

i+ m+2
It: H(t,.¢t) £ am)(DIR(t) dt

j-m-1 H(ti.t)m+e+l+p t

i+l
f(2m+p(c) . .

p=0 (m+é+1). .. (m+e+14p) {

t
O oy B3 E(jomy (8IR(E) de

+
i
= J—;-l Am+e)! 1 f (t...)
p=0 (m+e+1+p)! nm+e+l+p (2m+p)* "1+l
+

t
(-ni™m L2l ft:*‘ B o) (DRCE) de

and using the Mean Value Theorem. we have, with t < fi < tiep

Ul (mee) 1

1
p=1 (m+2+1+p)! nm+8+l+p f(2m+p)(ti+l)

" (m+e+1)n

meerT fe2m)(tep) *
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v (-1)d™ L*e)! 1

0T Grarpyad o1 () )

—(m+e+1))_

1
* ey T em () T ol

Therefore we obtain

n-1

PICE 2;+1 2o fom(tier) * o(n™>")

_ et

~ (2m)!

IéMS

e

| _qyM n-1 _
| ) {2_'3_' fo [u(1-w)]" du ?::Tl 2o fram) (Fren) * o ).

Using — 1. h(( ) (¢, —ti). we obtain

i+l
n®M1-1.] - %5-%7 B(m.m) J° £ (om) (D)B(E) dt
n
(-1)™ m!
Gy e DT Fen1)® = fon-1)@] - 0

3. OPTIMAL-OOEFFICIENT ESTIMATORS

The optimal-coefficient estimators dIn minimize the mean square error

dIn)2 among all linear estimators that use the q.m. derivatives of the

process X at the sampling points. They are of the form

E(I-

2 ' -1
(3-1) aln = fkr 1 M
n n n
where
an = (X(J)(to.n)""'X(J)(tn.n))J=O.. K 1 x (K+1)(n+1) vector,
i,j=0,....
er = RO e MR (e < G
covariance matrix assumed nonsingular,
k.1 = (f(J)(tO.n)""'f(J)(tn.n))J=O.....K t 1 x (Kel)(n+1) vector.

£(t) = I: R(s.t) #(s)ds.
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The asymptotic performance of these optimal-coefficient estimators using
regular sequences of sampling designs, dIn(h)' is given by Theorem 1 under
slightly different assumptions than those considered by Sacks and Ylvisaker,

where also the jump function aK(-) was assumed to be constant.

Theorem 1. Under Assumption AK we have

x+1)!2 b a (£)47(c)
(2) [(K3)T “a A2 )

2K

+2 A 2
n E[1-4I (h)] dt.

sl

1/(2K+3)

If b is proportional to (aK¢2) , then the asymptotic performance

becomes

(K+1)12

2K b 2
T ) (xeayT Ua [x(0)e7(0)]

+2 2 * _2
n E[I-dIn(h )]

1/(2K43) 4, 2K+3

with minimal value of the asymptotic constant. The asymptotic optimality of
the designs {Tn(h*))n is shown in Sacks and Ylvisaker (1970), where the jump
function o, was assumed constant, and under a Lipschitz type assumption near
the zeroes of weight function ¢ (cf. (3.15) in SY (1970b)).

The condition AK and function ay used in Theorem 1 are defined as follows,

where the following notations are used: R(p'Q)(s.t) = 6p+qR(s.t)/aspatq.

RPD (e eo) = tim RO V(es) ana RP V(e e4) = 11m_| RPVD(e.s).

1

(K.K) exist and are continuous on the square

Assumption AK (K=0,1,2,...).(1{) R
[a.b] x [a,b].

(11) Each R(p’q)(t.s) with p+q=2K exists on the square [a,b]x[a.b]: has
continuous mixed partial derivatives up to order 2 off the diagonal (t#s); and
at the diagonal (t=s) it has left and right derivatives which are continuous
functions of t, {.e. R(p'q)(t+.t). R(p'q)(t-,t) exist and are finite for all

|R(0.2K+l)(s

p+q = 2K+1 and are continuous functions of t, and sup t)] <,

R(O'2K+2)(-

s¥t

For each t € [a,b], ,t+) € H(R), the reproducing kernel Hilbert
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space of the covariance R with norm "‘"R' and suptHR(O'2K+2)(-,t+)llR (o,  Also
each R(J'2K+2)(t.s). j=1,....K, exist and are continuous on [a,b]x[a,b] for
t #s.

(ii1) aK(t) = R(K'K+1)(t.t—) - R(K’K+1)(t.t+) is positive and continuous
on [a,b].

(iv) ¢ and h have K+2 continuous derivatives on [a,b].

Part (i) of Assumption AK is the necessary and sufficient condition for
the process X to have K mean-square continuous q.m. derivatives. Part (ii)
requires smoothness properties off the diagonal and thus it is weak. Part
(iii) guarantees the process X has no more than K q.m. derivatives.
Assumptions (i)-(iii) are satisfied by a large class of processes including Kth
order iterated integrals of Wiener process, and stationary processes with
rational spectral densities. When X is stationary, R(t,s) = R(t-s), then
conditions (i)-(iii) are satisfied iff R(2K+2)(t) exists and is continuous for
t#0 and R(2K+l)(0+). R(2K+1)(0—) exist, are finite and the jump
a (1) = R D0y - gE*D(01) = a 15 positive.

In the proof of Theorem 1, we will use the following "h-weighted”

derivatives of the covariance R,

Rip.q)(t:s) = E{Y 1 ()Y y(s)} for 0 ¢<p.q <K, and t,s € [a,b].

Furthermore, we define recursively R(p q)(t.s) for {K < p or K < q and
0 ¢ ptq ¢ 2K, t,s € [a,b]} and for {2K+1 { p+q ¢ 2K+2, t # s in [a.b]} as

follows:

1

_ 1 o(0.1)
Rp.q)("%) = 7(5)

R(p.q-1)

(t.s) for K < q,

(t.s) = < R(VO) (h gy for K < p.

Rip.q) h(t) N(p-1.q)

Proof ¢f Theorem 1. Let PK n be the projection from the Hilbert space H(R(O))




onto sp{R(o J)(..t). te€T, §=0,..., K}. In view of the isomorphism between
H(R(o)) and H(Y(O))' as in the proof of Theorem 1 in BC (1989), the mean square

error of the estimation of I by dIn(h) can be written as follows:

E[I-,T (h)1° = uf-P €02 = <f-P £, B0 = O (£-P, £)(s) h(s) ds

K.n R(O) R(O)
where f(t) = I: R(O)(t.s) h(s) ds. Let g = f - PK.nf' Then g is orthogonal to
sp{R(o j)(.’t)' t € Tn' J =0,...,K} and in particular g(j)(ti) =

< =0 for j =0,...,K. Applying Proposition 1 with
(0)

= K+1 to the function g, we obtain

& Ro.n ) R

E[1-,I_(h)]° = f: g(s) h(s) ds

ket 2L K ok j
ST I I T et (T B0t Oy ()]
K+1 n-1
-1 i 1, K+1
t T 27 1+n P IHCEy He g DT B oep) (K)B(X) dx
K+1 n-1 t
i+1, K+1
- T 2T THCE 0ROt T B g9y (X)h(X) dx.

From Assumption AK' we have

frake1)(8) = J5 Rio, oka) (s t+)(s)ds + I R(g, ake1) (8- t-IN(s)ds
and taking the h-weighted derivative,

Flakeo)(t) = —Bg(e) + IZ R(O.2K+2)(s.t+)h(s)ds

where BK(t) =R From Assumption AK'

(O.2K+1)(t't_) - R(0.2K+l)(t't+)‘

R(O.J)("s) € H(R(o)) for §=0,...,K and R(0.2K+2)(°'t+) € H(R(O))‘ and thus
Reo.pl*-2): R(0.2K+2)("t+))R(0) = Ry okez) (s t4)
and since PK nf € sp(R(O J)(-,t),t €T . Jj=0..... K}, we have for t € Tn'
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<P ,t+)>R

K.nl* R(o 2ks2)(" ©

| = (P o) (o) () = (P 1F) (g0 (1)

Writing R(O.2K+2)(.'t+) = EY(O)Et' Et € H(R(O)). it follows from the

isomorphism between H(R(O)) and H(Y(O)) that

<f.R(0.2K+2)(-,t+)>R(O) = E[I: Y o) (s)h(s)ds € ]

Iz ELY g, (5)E Th(s)ds = IZ R (0. ak+2) (5 tH)h(s).

It then follows that for t ¢ Tn'

5(2K+2)(t) = 'BK(C) + < f - PK.nf' R(O.2K+2)(.'t+) >R

(0)
Then, it follows that
K n-1 t
_ 3 2 _ (-1 i+i,n K+1
E[I-4I (h)]" = (2K+3)T 1§O Iti P(e)[H(ey Le)H(e.e, , )] h(t) dt
= N
K+1 n-1 ¢
-1 i+l,n
+ S U Cf-P, f. R (. t+) >
(2K+2)! 1=0 ti.n K.n (0,2K+2) R(O)

K+1
X [H(ti'n.t)H(t.ti+1'n)] h(t) dt.
The second term is bounded in absolute value by:

1 n-1t

i+l,n K+1
TERIQTT "f—PK.nf"R(O)M0.2K+2 izofti ) [H(ti.n't)H(t'ti+l.n)] h(t)dt,

where H0.2K+2 = suPt"R(0.2K+2)(.'t+)"R(O) { @ As in the proof of Proposition
2, we have

n-1 t 2
i+l.n K+1 (K+1)!

[ [H(t, _.t)H(t.t )] h(t) dt = :

1=0 %i.n 1.n i+1,n n2X*2 (oK43)1

The upper bound then becomes (for some constant co).
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co NE-P _Fl n(2K+2)
' (0)
Since HﬁK(t)| < 4 by the continuity of ﬁK(t) on [a,b], and "f_PK.nf"R(O) <
HfHR , we have for t ¢ Tn'
(0)
lg oK+ ()] ¢ c o+ IE My opio
(0)
so that for some constant Cq»
K+1 n-1 ¢t
2 -1 i+l,n K+1

"f'PK.nf"R(o)‘ (DT 2, fti . [HCy L3dH(x t 4 )T o) (K)R(X) dx

< c2n_(2K+2) .

It follows that for some constant 4 the second term is upper bounded by

c n_(3K+3). —(3K+2)).

3 Therefore the second term is o(n

For the first term, since each H(t1 n.t)H(t,t } has positive sign on

i+l.n

(ti n' Ci+1 n)' the Mean Value Theorem can be applied to write it in the form

0f et 1
|
(2K+2)!n2K+2 (2K+3)! {=0 K*>1{,n’ n
1
vhere t, <&y n < tierns Usime o= b0 D0ty a7t n) S CGn €

t , and the above result for the first term, we obtain by Riemann

i+1,n
integrability,

. K 2
o2 pr1- 1 )1? -+ (L0 12 Ae(on(e) ae.

The final expression of the asymptotic constant follows from Lemma 3 in

BC (1989). 0

4. SIMPLE-COEFFICIENT ESTIMATORS
Simple-coefficient estimators using the existing K q.m. derivatives of X

at the sampling points give better approximation of the integral I than the
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simple-coefficient estimators (1.3) which do not use these q.m. derivatives.
These estimators are based on the trapezoidal rule, with a correction term that
depends on the values of the q.m. derivatives of X at all sampling points of a
regular sequence of sampling designs, i.e. on the weighted Rodriguez formula.

They are of the form:

COVTIR S U < T

(4-1) 41,(h) = Geaoy §20 7T GFDTRIIT |

J
iO[Y(J)(ti’n)+(_1) Y(j)(ti+1.n)]'

where the h-weighted q.m. derivatives Y(j) of Y are defined as in Section 2:

- (1)
Yo Y/ho o Yo=Yl g2 L

and superscript denotes q.m. derivative. Note that for odd j the i-sum
telescopes to Y(J)(a)—Y(J)(b). Their asymptotic performance is given by

Theorem 2 under a weaker assumption than in Theorem 1.

Theorem 2. Under Assumption Ak. we have
2K

2
2 ¢ (t oy t)
n2X+2 E[I—dIn(h)]2 - (K+1)! b Joy(

R T2 (KI)T “a 2 ) de.

2)1/(2K+3). then the remarks on the

If h* is proportional to (aK¢
asymptotic performance and optimality following Theorem 1 are also applicable
here. Assumption Ak is defined as follows, and the comments made on Assumption

AK in Section 3 are applicable.

Assumption Ak (K=0.1,2,...). Assume (i), (iii), (iv) of AK and instead of (ii)
the following.
: (K+p.K+q)
(11)" If p.q are nonnegative {ntegers with p+q<2. then R (s.t)
exists and is continuous off the diagonal of the square [a,b]x[a.b] (i.e. for
s#t): at the diagonal s=t, R(K'K+l)(t.t+). R(K'K+l)(t.t—) exist, are finite and

are continuous functions of t; and for p,q¢l, SUP_ ¢ IR(K*p'K+Q)(s.t)| o
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For K=0, the simple-coefficient estimators have only a "trapezoidal”
component (without correction term). For K=1, they have a correction term that
depends only on the q.m. derivatives of X at the endpoints of the interval
[a.b]. and after approximating these q.m. derivatives by finite differences,
the resulting estimators are identical to those given in (1.3).

The weighted q.m. derivatives in (4.1) can be approximated by the
generalized version of Newton's backward and forward finite difference formulas

for regular sampling as follows (cf. BC (1989). Krylov (1962))

K
~nd 1 w(3) 0y . _
Y(j)(ti.n) Xn ezj T ¥ ' (0)A Y(O)(ti.n) for i=0.1,....,n-K,
K . . 8+j
%~ nd eij '(—%—wé(zj)(o)AeY(O)(ti—e,n) for i=n-K+1,...,n,

where We(u)=u(u—1)...(u-e+l). 21 (Wo(u)=1). In order for the procedure to be

"symmetric”, we also use in (4.1),

K
%~ nJ 1.0 e
Y5 (t1e1,n) ® 0 ezj SO Y0y (tieq.n) for 1=0,....K-2,
% nd § 1 w(3) 01aly . 1
o e:j _e-Twe (O) (O)(ti+l—e_n) for 1=K- [P 1 5P O

The estimators derived from these approximations and (4.1) are of the form
n
T =1 2.8
(4.2) Tl =5 I b GO )

where the expressions of the coefficients bi are too complicated to write for
general K (much more so than in (1.4")). Their values for K=0,1,2,3 (and

appropriately large n) are:




1 1

K=20 3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5
5 13 13 5

K=1 o IPL 1, 1, 1, 1,1, 1, 1, 1, 1, 1, o Tz
11 143 14 121 121 14 143 11

K=2 3 T30 B 150 i, 1, 1,...,1, 1, 1, 120 s 190 30
K = 3 529 2263 1327 1721 87 83 1 1 83 87 1721 1327 2263 529

"1680°' 1680°' 1680° 1680' 84' 84° ' 84' 84' 1680' 1680°' 1680’ 1680

We conjecture that the simple-coefficient estimators (4.2) have the same
asymptotic performance (1.1) as the simple-coefficient estimators (1.3). The
example in Section 5 of a stationary process with two q.m. derivatives seems to
support this claim.

The asymptotic constant corresponding to the optimal-coefficient
estimators or the simple-coefficient estimators (1.3) that do not use the

existing K q.m. derivatives is

Bogso| 4 @ (£)4°(t)

% = @7 Ja K2 de.

The asymptotic constant corresponding to the optimal-coefficient estimators or
the simple-coefficient estimators (4.1) that use the existing K q.m.

derivatives is:

(k+1)12 P a (1)4%(1)

dXK = [K+2) T(2K3)T “a hF2

dt.

Their ratio depends only on the degree of smoothness K:

X (Ke1)12
G~ TBygsp[(23)!

For large sample sizes, the number of samples required for a given mean square

error when using estimators with and without q.m. derivatives are related by:
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1/(2K+2) 1 for K = 0,1,
'k | d% ] s2 for K = 2,
ny K .60 for K = 3.
.41 for K = 4.

Thus, the performance improvement of the estimators that use q.m. derivatives

over those that do not increases as the number of q.m. derivatives K increases.

Proof of Theorem 2. For simplicity we write In for dIn(h). In view of the
isomorphism between H(R(O)) and H(Y(O)). the mean square error is written as

follows

2

2
E(I - 1)° = 0f_ng

(0)

where

Fa(t) = ELY 0 (6)(I-1)]

- /PR (t.s)h(s)ds - n§1 g L _F [R (t.t,)+(-1)IR (t.t, )]
a (0)'"" 120 joo mtl J.KET(04)TTH (0.5)' 7 i+l
and
o= (Kel)! (2K-j+1)!

J.K 7 (2K+2)! (K-j)'(j+1)!
Thus, for K > O,

2
E(1-1 )% = <f_.f >

"R
b n-1 K 1 i
= J, f (t)h(t)de - 150 Jzo R Fix [(fn)(J)(ti) + (-1) (fn)(J)(ti41)]
1 bt K+1
= T xio I‘: Ay (RO OHCE DT () e (OR(E)de

by Proposition 1 with m = K¢l. Integrating by parts we obtain

n-1 t

‘ (g O omee e 01 o, !
{

‘ 2
P(lfln) = 2T

=0
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t
_ j‘i+l dgpalH(t, OHCE e, DT ) (On(e)de ).

Applying Proposition 1 to the integral of R(O)(t.-) in the expression of
f . we obtain
n
n-1

141
1§o i) 1+ dy, 1 [H(t, . s)H(s. c1+1)] (O'K+l)(t,s)h(s)ds.

I
F.(9) = Ryt

and taking the Kth weighted derivative, we have

(F) ) (V) = (2Ki2), Jzo S j*l K+1[H(tj.s)H(s,tJ+1)]K+l Reg ke1)(t-S)n(s)ds.

Now we show that (fn)(K)(ti) = (fn)(K)(ti+l) = 0. Indeed, using the following

function which was introduced in the proof of Proposition 1,

LJUH(t, t

1
Pyttt b)) = eyt dket RO i+1)]

and its explicit expression there, we have

f (t, K+1 ngl PR R h(s) d
)ty = (2K+2)‘ £ Pyt bRk k1) (Fy-8)D(s) ds
J=0 J
K+1 e n-1 t
(K+1)! s (K+1+2)!(-1) 1 j+1
= — 3 [ H (t,.s)R (t,.s)h(s) ds.
(2K+2)! =0 (K+1-2)! e!2 nK+1 [] §=0 tJ J (K.K+1)' i
Applying the Mean Value Theorem., we have
(F ), (t,) = el 1 et Ny (t..b.)
nT(K)THT T (2K2) T K2 T (ke1-0)t er2(es1) gm0 (KKHD)TTUTTY
where t <b <t . By taking h to be the uniform density, the h-veighted

J il
polynomlal P(O)(t;t .t l) becomes the classical Legendre polynomial

DK‘I[U(I u)] over the interval {0.1] and therefore

(K‘l)'
I Kel K+ 1 K (rr1se)r (- 1) K (ke1s0)r (-1)°
IO DK (u(1-u)]" "du = 3 f du = 3 L 5
P=0 (Ks1-#)! 012 P=0 (Ke1-0)" £12(0+1)

and since
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1
53 ¥ - 1 au = (0w ¥ = o

it follows that (fn)(K)(ti) = 0, and likewise (fn)(K)(ti+1) = 0. Thus the

; . 2 . .
first term in the expression of the m.s.e. E(I—In) vanishes and we can write

n-1 t
E(I-1 )% = - (%EE%%% 2 ft:+l Peyy(titg by, )(E) e (DIh(e)de.

Replacing (fn)(K)(t) by its expression, the m.s.e. is decomposed into two

terms: the diagonal terms Ei Mi and the off-diagonal terms 73 M

i igj 1,47

Diagonal terms Mi.i'
M = - LE:llif_ Iti+1 P, \(s:t,.t )[ I +fti+1 ] P, (t:it,.t,. )
i, i (2K+2)!2 t (0)Y7 "1° i+l t, s (1) 771 Ti+l

x R(K.K+l)(t's)h(t)h(s) dtds.

Using the expression of P(I)(t:ti'ti+l) in the proof of Proposition 1, and
integrating, we obtain from the Mean Value Theorem
(k+1)! KL karaey 1 (-® 1
M=~ 5 2 K+1-2
’ (2K+2)!™ e=1 (K+1-2)! é!(é-1)!' n

x { I;I*l p(o)(s;ti,ti+l) % He(ti'S)R(K,K+l)(ns's)h(s) ds

t
i+l 1 [
J

ty P(O)(s;t1~t1+1) % ;? - H (ri.s)]R(K.K+1)(n;.s)h(s) ds}

where ty < ng <8« ng < tiel” From the expression of P(O)(s;ti'ti+l) and the

Mean Value Theorem, we have

v oo e KU (keree) 1 K keepyr-)P

¢
(-1) — 2 T
L4 (2K+2)12 e=1 (K+1-2)! 012 nK*178 00 (Kel-p)tpt2  nfPLP

t
x { R(K.K+1)("i'ai) ft:+1 Hp+e(t1.s)h(s) ds




Ry (i8y) S il [ i; - He(ti.s)]Hp(ti.s)h(s) ds }

where ty < n; < a, < tivl ti < a < ni < ti+l'
Coxap®
(2K+2)12 p2K*3
s ( o) (1 kensp)r (1P 1
Rk, ke1)(M5025) 2 2
=1 (K+1-¢)!' @! p=0 (K+1-p)! p! p+é+l

K+1 ' 2 K+1
a;) 3 (K+1+8)! (1) s (K+l+p)! -nP [pil -1 J}

2=1 (K+1-2)! 2'2  p=0 (K+1-p)! p'2 pré+l

+

Rk.ke1) 13

w . o
e now concentrate on the coefficients of R(K,K+l)(ni'ai) and R(K.K+1)(ni'ai)'

We have
1 K g (1-a) K I DK*20y (1ov) JK*
= (K+1)! :%i (?;ite%;'(e}) K+l[ (l_u)] 3 (%ET;T
et 5 G 8 “:;1:*3;;,(;,;;2 Bt e
= (K+1)! KEI (ke1+2)t (-1)° Kgl (K+1+p)! (-1)P 1 '

=1 (K+1-8)! 3!2 p=0 (K+1-p)! p!2 p+é+1

and also by repeated integration by parts we have

So DM ru(-w) 1 au 13 0K 2y (a-vy K
= -0l fu-n T D2 1-uy K
2
= (-)F ¥ (2k+2) 1 B(K+1.K41) = (2Kzgﬁi3§f+1)’

Equating the two right hand sides, we find that the coefficient of

Rik.ke1)(my-8y) 1s
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(K+1)12 1
T R (KT 2R3
Also,
l D% ru(1-u) I 1 pK*2 [v(1-v) 1%
e-1
e " e 00 e Y
O R St I S (ST STRE VL SO
=1 (K+1-2)! p—o (K+1-p)! p!
- (ke1y12 L keire)r (08 1 (kerep)r (-1)P [ L ]
e=1 (K+1-8)! 212 p=0 (K+l-p)! pt2 L P+l présl

and repeated integration by parts gives

1 pK+2 (2K#2) ! (K+1)12

5 D ru(1-u) 1 [v(1-v)1¢* e TIL

Equating the two right hand sides, the coefficient of R ‘.ai) becomes

x.k+1) (N

(K+1)!2 1
(2K+2) ' (2K+3)! n?_K+3 ’

Therefore
(K+1)' 1 vy
M1 = (3Ke2)T (2Ke3)" 3K+ 3 {Riker. k)M ~ Riger ky(@em) )
Using % = h(ci)(ti+l-ti)' t < (i < tisepr Ve obtain by Riemann integrability,
n2K+2 M (K+1)!2 fb (R (t-.t)-R (t+.t)Jh(t)de
i,1 n (2K+2)! (2K+3)! “a * " (K+1,K) ’ (K+1.K) )

(k+1)12 b $08) (1)
= (2K+2)7 (2K+3)! Ja h2K*2 0y

dt

(by Lemma 2 in BC (1989)).

Off-diagonal terms M 1#].

1.5
Integration by parts gives
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t
ft:*l P(l)(t;ti'ti+l) R(K,K+1)(t's)h(t) dt
= Py et ) Rckeny Caen®) 7 Prop (o ey B DR (ke (84 9)
i+
_ It P(O)(t;ti'ti+1)R(K+1,K+1)(t-5)h(t) dt.

i

so the off-diagonal term becomes

2 t
Kel)! +1
PR L.52 L. { L P oy (tar 5 S DR (i ko) (B )

1. (2K+2) 12

(O)(ti: i'ti+l)R(K.K+1)(ti‘s)] P(O)(s:tj,tj+l)h(s) ds

t t
- fti*lftj*l (O)(t t i*1)15’(0)(5 t j+l)R(K+l_K+1)(t's)h(t)h(s)dtds}'

The first term has already been shown to be identically zero. Thus, we have

2 ., t
M - (K+1)! I i+1 h j+l ¢ P ¢
LI (ake2)® Y Yy O R R O R R

R(K+l'K+1)(t,s)h(t)h(s)dtds.

(511)'2 KU ks (-n)® 1 KD (keepyr(-)P 1

(2K+2)12 0=0 (K+1-2)! 212 nf*17¢ o (Ke1-p)! p!2  RKHIP

t t
8 J.t:+1 Itj+1 He(ti.t)Hp(ti-S)R(K+1'K+1)(t's)h(t)h(s)dtds'

Applying the Mean Value Theorem, we obtain

v o (ke)? 1 K;‘ (K+1+2) 1 (-1)°
= - []
137 (gegy 12 oA g (1)1 21!
K+1

(K+1+p) ! (-1)P
X EO (K+l—p)'p t(p+1)! R(K+1.K+l)(ai.e'bj.p)

where t <ai e( i+1° tj<bj.p<tj+1' It follows that
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2K+2 1 1 K+l K+1 2
n IiM - —— { [, D" [u(l-u)] du }
12y 3™ (oke)?2 O
x {#i R(K+1'K+1)(t.s)h(t)h(s) dtds = O.

The final result is obtained by combining the diagonal and the

off-diagonal terms. a

5. EXAMPLE

We consider the approximation of the integral
1 - fé P (0)de.

where the stationury process X has covariance

2
R(ts) = ( 1+ alios] + Tees)? ) el

with spectral density ¢(A) = (8a5/3n)(a2 + R2)-3, and thus exactly K=2

mean-square continuous q.m. derivatives. When 8 # O, the density that

generates the asymptotically optimal design is
Wty = (287) (2P 7-1)7 2T o,
and the corresponding sampling points are
c:‘n = (7/28) en[1 + (e "-1)i/n].  i=0. . n.

The sample size of the design Tn is N=n+1. For simplicity of notation we wil|
write t, for ti.n
The simple-coefficient estimators (1.4). with K=2. which do not use the

two existing q.m. derivatives, are denoted by In. The asymptotic constant irn

n6 E(I-In)2 — C2 has the following expression under the asymptotically optimi.

design

R
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o

»* 6 1 2Bt,1/7 7 75
C2=6T(fo[a2(t)eﬁ] dt } = v a /5670 ,

( ay(t) = 16a>/3. By = 1/42, 7 = (7/28)(e2?”7-1) ). and has the following

expression under the uniform design

B
u 6 1 2Bt 2B
= 6—'1‘0 a2(t)e dt = (e _1)/11340

The optimal-coefficient estimators (3.1) which use the existing two q m.

ey

Lol n
derivatives at the sample points (ti.n)izO are denoted by dIn. The

simple-coefficient estimators (4.1) which use the existing two q.m. derivatives

% .n i
at the sample points (‘1.n)1=o have the form:

” 1 1 n-1
dIn = ; ( 5 Y(o)(O) + E Y(o)(t n) 2 (O)(l) ) + ____ { (1)(0) Y(l)(l)>
1,1 n-1 1
+ = 5 Y(5)(0) + z Y(2)(t a3 Y}
where

INOE P71y,

Y0 = 12 (3877 %g X(t) + X'(t) ).

3, (B/T)t { __QE X(t) + %gg X'(t) + X"(t) }.

Y(2)(t) = 343

The asymptotic constant under the asymptotically optimal design in

6 ~n 2 » 6 » 2 »
n F(I—dln) — dC2 and in n E(I-dln) — dC2 is

» 1 1 t.1/7 7 75
dC2 = m (fo[a2(t)ew ] dt) = v a /18900.

The simple-coefficient estimators (4.2) with K=2, which use the
approximated existing two q m. derivatives at the sample points (t: n)i-O are
denoted by T

enot Y aln:
When B is close to zeiro. the asymptotically optimal sampling design
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becomes close to periodic design. The improvement in performance of the
asymptotically optimal design over the uniform design, when either estimators
I: or dT: are used, increases with B. We select a moderate value of B = 3 to
differentiate between the two sampling designs.

For small values of a (highly correlated observations) the normalized mean
square errors are very small; for example when a = 5. a sampling design of size
3 gives a normalized m.s.e. of order 10-3. For large values of a (weakly
correlated observations) the normalized m.s.e.’s are significantly higher; for
example when a = 20, a sampling design gives a normalized m.s.e. of order .3.

The normalized m.s.e.’'s corresponding to the optimal-coefficient
estimators and simple-coefficient estimators that use the two existing q.m.
derivatives, E(I—di:)z/EI2 and E(I—dI:)z/EI2. along with the asymptotic
expression n-GdC*/Elz. are plotted versus the sample size N=2,...,20 in

2
Figure 1 for a = 15, B = 3. It is seen from Figure 1 that for small sample
sizes the optimal-coefficient estimators din outperform (as expected) the
simple-coefficient estimators dI:‘ However, for moderate n their performance
i1s nearly identical and very close to their asymptotic performance.
The normalized m.s.e.’'s corresponding to the two simple-coefficient

estimators, E(I-In)z/EI2. E(I—dT;)2/E12

., along with the asymptotic expression
n_6C2/E12. are plotted versus the sample size N=2,..., 20 in Figure 2 for
a = 15, B = 3, under both the asymptotically optimal (%) and the uniform (u)
sampling designs. It is seen from Figure 2 that the asymptotically optimal
design provides better performance than the uniform design. It is also seen
that the m.s.e.’'s of the two simple-coefficient estimators In and dT; are
almost identical for all computed sample sizes, thus suggesting that dT; has
the same asymptotic performance as In.

Comparing Figures 1 and 2, we see that the estimators that use the

existing q.m. derivatives have better performance than those that do not for

moderate and large sample sizes. Table 1 shows the number of samples N
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required to achieve a specified performance under different designs and

estimators.

References

Benhenni, K. and Cambanis, S. (1989). Sampling designs for estimating integrals
of stochastic processes. University of North Carolina Center for
Stochastic Proccusses Techmical Report No. 265. Apr. S9.

Eubank, R.L., Smith, P.L. and Smith, P.W. (1982). A note on optimal and
asymptotically optimal designs for certain time series models. Ann.
Statist. 10, 1295-1301.

Krylov, V.I. (1962). Approximate Calculation of Integrals. MacMillan, New
York.

Sacks. J. and Ylvisaker, D. (1966). Designs for regression problems with
correlated errors. Ann. Math. Statist. 37, 66-89.

Sacks., J. and Ylvisaker, D. (1968). Designs for regression problems with
correlated errors; many parameters. Ann. Math. Statist. 39, 49-69.

Sacks, J. and Ylvisaker, D. (1970a). Designs for regression problems with
correlated errors II. Ann. Math. Statist. 41, 2057-2074.

Sacks, J. and Ylvisaker, D. (1970b). Statistical designs and integral
approximation. In: Proc. Twelfth Biennial Seminar of the Canadian
Mathematical Congress, 115-136. Canadian Mathematical Congress, Montreal,
Canada.

Shoenberg, I.]J. (1969). Monosplines and quadrature formulae. In Theory and
Applications of Spline Functions, T.N.E. Greville (ed.), Proc. Advanced
Seminar (Math. Res. Center, Madison, Wis., 1968), MR 38 #3663.

Stein, M.L. (1988). Asymptotically efficient prediction of a random field with
a misspecified covariance function. Ann. Statist. 16, 55-63.



Normalized m.s.e.
Design Estimator 10—1 10—2 10-3
Simple coefficients I: 3 5 8
Asymptotically No derivatives
Simple coefficients dT: 3 5 8
optimal Approximated derivatives
From asymptotic expression (C;) 4 5 8
No derivatives
Simple coefficients I: 4 7 11
No derivatives
Uniform Simple coefficients dfﬁ 4 7 11
Approximated derivatives
From asymptotic expression (C;) 4 6 9
No derivatives
Optimal coefficients dI: 2 4 6
Asymptotically With derivatives
Simple coefficients dI: 3 4 6
optimal With derivatives
From asymptotic expression (dC;) 3 4 6
With derivatives
Table 1. Number of samples N required to achieve a specified

performance under different designs and estimators for
a=15, B = 3.
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